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Abstract. The mean numbef\') of metastable states in spin glass models with short-ranged
p-spin interactions is estimated analytically using a variational method introduced by Tanaka and
Edwards (1980. Phys. F: Met. Physl02769) for very large coordination numbers. For lattices
with small connectivities, numerical simulations do not show any significant dependence on the
relative positions of the interacting spins on the lattice, indicating thus that these systems can be
described by a few macroscopic parameters. As an extremely anisotropic model we consider the
low-autocorrelated binary spin model and we show through numerical simulations that its landscape
has an exceptionally large number of local optima.

1. Introduction

The notion of an (adaptive) landscape has proved to be a valuable concept in theoretical
investigations of evolutionary change, combinatorial optimization, and the physics of
disordered systems. From the mathematical point of view, a landscape consists of three
ingredients: (i) a seY of ‘configurations’ which we shall assume to be finite but very large,

(ii) a cost or fitness functiory : V — R that evaluates the configurations, and (iii) some
sort of additional geometrical, topological, or algebraic structtiren V that allows us to
define notions of closeness, similarity, or dissimilarity among the configurations [1-3]. In the
simplest case} is an adjacency relation. In this paper we shall consider systems consisting
of N Ising spins and we shall assume that two spin configuraticaredx’ are adjacent when

they differ in the orientation of a single spit], = —x;. We say thak € V is alocal minimum

of the landscapg if f(x) < f(y) for all adjacent configurations (neighbousspf x. The

use of< instead of< is conventional [4, 5]; it does not make a significant difference for spin
glass models. Local maxima are defined analogously. The nunibarlocal optima in a
landscape may serve as a measure for the landscape’s ruggedness [6].

Alternatively, ruggedness can be measured by means of correlation functions soh as
defined as the autocorrelation function of the ‘time serjg&,) sampled along an unbiased
random walk ofs steps on the configuration space [3]. Explicitlys) can be represented as
a quadratic form

r(s) = (f, (DA H/(f, ) (1)
|I Author to whom correspondence should be addressed.
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where A is the adjacency matrix of the configuration spadég X), D is the diagonal
matrix of its vertex degrees, i.el),, is the number of neighbours of each configuration,
f(x) = fx) = f,andf = |V|71Y, f(x) [1]. Itis not hard to verify that(s) is an
exponential function if and only iff is an eigenvector ofA. Such landscapes have been
termedelementary The importance of elementary landscapes derives in part from the fact that
all Ising spin models

H()C) = Z L-lizm,-pxilxiz e )C,‘p (2)

(i1<ipg<--<ip)

with a fixed interaction ordes are elementary, with an eigenvalfe- 2p that depends only on

p and noton the details of the index $gt< i, < - - - < i,) of non-vanishing spin interactions.
Inthe case that the couplings. ;, are statistically independent, Gaussian distributed random
variables, equation (2) defines Derrid@'sspin Hamiltonian [7], which fop = 2 reduces to
the well known Sherrington—Kirkpatrick (SK) model [8].

The information contained in(s) is conveniently further condensed into ttarrelation
lengthe = Y2, r(s). Forelementary Ising spin models we obtain, immediately, N /(2p),
see e.g. [9,10]. It would appear th&tand¢ are two sides of the same coin, and hence we
would expect a close connection between the two measures. Indeed, for Deprisiziis
Hamiltonian the expected number of local optifnd) scales like exjga N) with « increasing
from 0.199 forp = 2to In2~ 0.692 for p — oo [11]. This increase o&, and hence of the
number of local optima, matches the decrease of the correlation |émgth increasingp.

Although for random landscapes (Hamiltonians with disorder) it is often desirable to
determine(in '), in most cases one hak A) = In(\) (a notable exception is the linear
spin chain [12]). The reason for this equality is that the overlap between two randomly chosen
metastable states vanishes with probability one and so the replica approach needed to evaluate
the average of IV reduces to the annealed approximation, which takes the average directly
on A [13]. Of course, this is no longer true if one considers specific classes of metastable
states (e.g., those possessing a given energy density) or if one adds an external magnetic field
to the Hamiltonian (2) [14].

In [1, 2] the notion of anisotropic random landscape was introduced as a ‘statistically
symmetric model’, that is, as a random landscape with a covariance n@ffix =
(f)fO)) — (L)) (f(y)) that shares the symmetries of the underlying configuration space.
An Ising spin glass is isotropic if and only if all interaction coefficieits;, are uncorrelated
with mean(J;, ;,) = 0, and those;, ;, that belong to a common interaction order have the
same variance(,Jifm,.,) = o%(p) [2]. In other words, the elementary isotropic Ising models
are exactly thep-spin Hamiltonians with infinite-range interactions. It is argued at length
in [15, 16] that isotropy can be interpreted as a maximum entropy condition. The properties
of the infinite-rangey-spin Hamiltonians are obviously determined exclusively by the number
of spinsN and the interaction order or, equivalently, by the correlation length

Short-range spin models, in which only a small fraction of(%l) possiblep-ary spin

interactions contribute to the Hamiltonian, i-(‘n’zfiz...i,) = 0 for mostp-ary spin patterns
(iy < ip < --- < ip), deviate significantly from isotropy. For the SK modgl<£ 2) a slightly
larger number of local optima has been found [17, 18] than for the infinite-range case [19].
The deviation is proportional to/1, wherez is the number of the nearest-neighbouring points
in a hypercubic lattice of dimensiah= z/2.

In this contribution we show that an analogous effect is at work in higher opder,2,
spin glasses. In addition, numerical simulations for small values of connectivities do not
show a substantial dependence on the patterns of interacting spins. The rest of this paper is
organized in the following way. In section 2 we generalize the variational method of Tanaka
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and Edwards [17] to estimate thézlcorrections to the expected number of metastable states
of Derrida’sp-spin model. The results of numerical simulations of fourth-order spin glasses in
two- and three-dimensional cubic lattices with small connectivities are discussed in section 3.
In section 4 we investigate the metastable states of a highly frustrated one-dimensional spin
model without explicit disorder, namely, the low autocorrelated binary string problem [20].
Finally, in section 5 we present some concluding remarks.

2. Short-range p-spin models

The coupling strengthg;, ;, in equation (2) are modelled as statistically independent random
variables with the Gaussian distribution

71 (Jiaip..i))%2P71 . ) .
P(Jigiy...i,) = T Exp —+ Oy <iz <--- <ip)] 3)
mp! p!

where®[(i1 < ip < --- < i,)] =1if (i1 < --- < i,) is a valid interaction pattern and 0
otherwise. Since in practice itis not feasible to consider a fixed interaction pattern, we consider
all interaction patterns with given fixed coordination numpem other words, we sum over
all ways of choosing the — 1 spins among the allowed ones.
As an immediate consequence of equation (2) the energy cost of flipping the;spin
8H = 2);, where
Aj= Z Jjig.ipyXjXiy - . Xi, 4)
(ip<--<ip)
is the stability ofr;. Hence any state that satisfies
A >0 Vi (5)

is a local minimum of the random landscape defined in equation (2). Thus the number of local
minima can be written as

N = Trxl_[/ da; a(x = Y Tjii XXy X ,-p) (6)
(ig<-+<ip)
where Tr. denotes the summation over th &pin configurations ansi(x) is the Dirac delta
function.
In the following we will calculate analytically the expected humber of metastable states

(N) in the limit of large N andz, with N > z. Here(...) stands for an average over the
coupling strengths in all possible interaction patterns with fixed coordination numbising
the integral representation of the delta function, the average over the couplings as well as the
summation over the spin configurations can be easily performed [14], yielding

Hf di; /Oo ﬂexp(l)L )

p!
4zp-1

S @it te +¢>,~,,>2}. 7

(i1<iz<--<ip)
Clearly, the expansion of the quadratic term in the argument of the exponential function
will lead to interactions terms of second order in the auxiliary figlddMore precisely, using

1
Z ¢11=H_71Z(Z_1)'“(Z_p+2)2i:¢i2

(11< <ip)

xexp[—

1
= [1 — 5 (P=Dp -2+ 0<z2>] > ¢ (8
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and

! 2
o Y b= G- DE-D G- ptD) ) b

(i1<-<ip) @i<j)
2
= [Z + O(Z_Z)] Z bid; 9)
(<))
we write equation (7) as
e -1
e / [Taeip@o exp[ =) ¢,¢,} (10)
% (i<j)
where
D)) = [1 L PP =D(p—2) b7+ O(zz)] /°° Ah iagi—po/a (11)
8z 0 T

is the field’s weight function. As mentioned before, equations (8) and (9) follow from the
sum over all possible interaction patterns with coordination numbeviore precisely, for

each sitg there are precisely sitesk such that(i, k, i3, .. ., i,,) is a valid interaction pattern

for some choice ofs, ..., i,. This notion of site connectivity is independent of the lattice
dimensionality; in fact, it is not necessary to assume that the sites are arranged on a lattice
at all: equation (10) remains valid as longzis site independent. Hence we will referzo
simply as theconnectivityof our model.

To proceed further we must evaluate the integrals in equation (10) taking the care to collect
all terms of first order in Az. In particular, note tha}_;_; 1 = %2, This can be achieved
through an ingenious variational method introduced by Tanaka and Edwards in their analysis
of the casep = 2 [17]. The idea is to add an auxiliary single-particle term to the effective
Hamiltonian of equation (10) which is then rewritten as

N e S 3] (12)
<)) i !
where the averagg. .); is defined by
_ [T1;dg: D(@)(..) exp(itp? Y-, ¢0)

o= - 13
b S T1; A D(¢:) expitp2 ", ¢:) (13)
and
(1) = / dg D(@) explitp™2p)
1 ¢ 2
—effc(—-N+-—=(p—-D(p—-2 e +0(z7?). 14
erfc ( t)+zm(p Jp—2e" +0(z7) (14)
For example, we find
ip"2 (i) = @' (1)/ D(1) (15)
—p(dd) = (1)) D(t) (16)
fork =1,..., N. Herer is avariational parameter which will be determined so as to maximize

(N). At this point we can note that the/4expansion is valid provided thats p2.

As usual, the average in equation (12) can be evaluated through the cumulant expansion.
In particular, we assume that only the first cumulant contains terms of zeroth orgerind.it
is solely these terms that determine the valuer,, that maximizes /') [17]. Of course, this
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assumption must be verifiedposteriorithrough the explicit calculation of the higher-order
cumulants. Evaluating the first cumulant we find thataximizes the expression

(p—1

In@ () — =07 — inp" (g0, (17)
and so it is given by the solution of the equation
1
tw = 3(p — Dip2 (), - (18)

The usefulness of the variational approach becomes transparent only when we rewrite
equation (12) replacingby t,, and rearranging the terms:

-1
(V) = exp[N In @ (1,) + N%@k),ﬁ] X (eXP(E)), (19)
where
- »-1
e= -2 (Z)(qb,- — (B, — (D)), (20)
i<j
Since (E),, = 0, it is now straightforward to evaluate the higher-order cumulants in the
cumulant expansion
=1
(exp(E))s, = exP( Zl H(En>tm;c)- (21)
In particular, we find
(EY);,c=0 (22)
2 -1 2
(E2)yc = N%«m — (B, D2 (23)
3 -1 3
(&0 = -V g — (2. (24)

1672
More generally, we can easily show th&"), .. is of orderz*". Therefore, to keep terms up
to 1/z we need to consider only the second cumulant in equation (21). Moreover, the leading
terms of the 1z expansion (i.e., the terms of zeroth order jiaJlare those outside the average
symbol in equation (19). Clearly, these results remain unchanged by the fact that-f@,
the averagesp;),, also contribute to the/k corrections, see equations (14)—(16). Hence,

2 2
% NG = In ®(5,,) + p(pTl)wwfm + %((qﬁf)m — 220D, (25)

The next step is to separate the contributions of zeroth and first ordgt.imma achieve

this we note that,, is determined only by the zeroth-order term in thie &xpansion so that
equation (18) reduces to

— lexp(—t2
ty = b M (26)
ﬁ erfc(_tm)
Inserting this result into equations (14)—(16), we rewrite equation (25) as
.1 1
Jim SN =a=ao+ ot 0z (27)
with
t2
ag = In[erfc (—t,)] — —2 (28)
p—1
2
2.2 I p—2
Y . T—— . 29
o ”’"[@—1)2 2p2] )
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Table 1. Values ofxp anda; obtained from equations (26), (28) and (29).

p 2 3 4 5 6 10

ap 01992 0.2956 0.3552 0.3965 0.4273 0.5001
a;  0.0656 0.3393 0.7789 1.3411 19985 5.2894

sg i ‘ ? ‘ T2 T3 2T4 L4

T1

Py PN L1 L3
® o o I

D B L2

Figure 1. Interaction patterns of various short-range 4-spin models. For each grid position

(indicated by the open circle) a non-zero contribution to the energy depends on the four spins
indicated by the black circles.

In table 1 we summarize the valuesaf anda4 obtained from a numerical solution of
equation (26). Fop — oo we finds, ~ /Inp and soxy — In 2, while «; diverges as
pln p. Of coursep;/z <« 1 since, as mentioned before, the Expansion is consistent only
if z > p2. We note that our results for = 2 are in agreement with those of [17]; the values
of og agree with the TAP solution [11], and with a numerical survey [21].

3. Simulations

The analytical results in section 2 are valid for very large connectivities; p?, and for
superimposed interaction patterns. Actually, the later restriction amounts to considering all
the interaction patterns as equivalent, in the sense that they have, on average, the same number
of local minima. In order to investigate the effect of distinct interaction patterns, in this section
we consider a variety of 4-spin models with small connectivities.

For the sake of computational simplicity we consider only translation invariant interaction
patternsP on two- and three-dimensional cubic lattices with periodic boundary conditions.
We identify each spin by itg-dimensional lattice coordinates and take all indices modulo the
lattice sizesn; throughm,. In two dimensions, for instance, translation invariance means
(i1, J1; 12, jos i3, Ja; ia, ja) € Pifand only if G+ p, j1+q; iz + p, o+ q;iz+p, ja+q;is+
p, jatq) € P forall integersp modm; andg modm,. The Hamiltonian (2) becomes

H(x) = Z JivjisizjaiisjssiajaXipjiXizjaXiz jaXiaja (30)
(i1j1,i2j2,13 3,14 ja) EP

in this example. A variety of interaction patterns on a square lattice, compiled in figure 1 and
named according to the number and type of combinations (patterns) of spins that contribute
to the Hamiltonian (30), have been used. In addition, we have considered three patterns on
a cubic lattice: (i) the ‘positive orthant’, coupling each spin , with its lattice neighbours
alongx;+1 j k, Xi j+1.. andx; ; x+1, (ii) the patterrs restricted to a fixed plane, i.e;, ; x coupled
With x; j+1k, Xijk+1, @Ndx; 141, and (iii) the couplings with the neighbours in all eight
orthants.
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Table 2. Estimated values af for various short-range 4-spin models. For each pattern we list the
numberX of non-zero interaction coefficients per spin, the site connectiyitiye best numerical
estimate fow and standard deviation estimated from the linear regression.

Model Pattern X z o Standard deviation
q S 1 8 0.4056  0.0027
qdq D 1 8 0.4058 0.0017
qlTq T1 1 10 0.3820 0.0024
alq B 1 8 0.3885 0.0266
a2q S,D 2 12 0.3830 0.0049
apq T3,T4 2 12 0.3830 0.0013
q3q S,D,B 3 16 0.3695 0.0014
q4q T1-T4 4 12 0.3807 0.0009
a5q T1-T4,D 5 12 0.3744  0.0012
q6q T1-T4,D,B 6 16 0.3746 0.0012
a8q T1-T4,L1-L4 8 20 0.3744 0.0014
qAq T.L,D,B 10 24 0.3757 0.0026
c octant 1 12 0.3911 0.0053
cp planars 1 8 0.4181 0.0076
c8 8 octants 8 18 0.4058 0.0174
4-spin  numerical 00 0.3509 [21]
TAP 0.3552 [11]
LABSP  open O(N%® O(N) 0.4634 0.0011
LABSP  periodic O(N% O(N) 0.4713 0.0020

The relevant quantity for comparing the simulations with the analytical theory is the
connectivityz of a lattice sitej, that is, the number of spirls # j such that/;;,;, # 0
for someiz andis. The value of; depends, of course, strongly on the interaction pattern,
see table 2. Note thatis independent of the lattice dimensionality and of the nunibef
non-zero interaction strengths per site.

Numerical simulations were performed by sampling up tbsiiin configurations from at
least 16 different instances (random assignments of the coupling constants) for each model
and values ofV = []{_, m, between 8 and 60. The standard deviations listed in table 2 are
statistical errors from fitting the curve(N’) versusn to a straight line. With the exception of
the cubic models, where we have only few data points, and the metglg2q, which show
quite strong finite-size effects, the correlation coefficient of the linear regresgion i39998.

By comparison with the numerical estimates for the infinite-range 4-spin glass we suspect
that systematic errors might be slightly larger than the statistical errors. A conservative estimate
appears to be an overall accuracy of at leis@012. We also note that replacing the Gaussian
distribution of J;, _;, by a uniform distribution with mean 0 apparently does not significantly
influence the number of metastable states.

The results of table 2 show a clear tendency for the decrease with increasing
connectivitiesz, as expected from the calculations of section 2. Moreover, for fixadd
within the estimated accuracy, the valuestafeem to be independent of the geometry of the
interaction patterns. This interesting result indicates that the properties of shortprapie
Hamiltonians may be fully characterized by a few macroscopic parameters, namesy,
andz. Indeed, the error between our theoretical predictiongfer 4 (see table 1) and the
numerical data for the two-dimensional model with the largest connectipity(z = 24), is
only 3.2%. (Comparison of the simulation data with the TAP solutionzfes oo yields an



8800 V M de Oliveira et al

error of 54%.) Since the estimated systematic error.24, the agreement between theory
and simulations is quite good and provides additional evidence of the minor role played by the
geometry of the interaction patterns on the landscape propertjespih models.

4. The low autocorrelated binary string problem

The low autocorrelated binary string problemBsSP) [20, 22] consists of finding binary
stringsx of length N over the alphabet+1} with low aperiodic off-peak autocorrelation
Ri(x) = Zf\’:’l" x;x;+ for all lagsk. These strings have technical applications such as the
synchronization in digital communication systems and the modulation of radar pulses. In the
periodic variant of this model, one consid&®gx) = Zf’zl x; x;+ With indices taken modV.

The quality of a string: is measured by the fitness function

N-1
&) =D Re()?. (31)
k=1

In most of the literature on tHeABSP themerit factor F (x) = N?/(2f (x)) is used (see [20]):
using f instead is more convenient for explicit computations.

Recently there has been much interest in frustrated models without explicit disorder.
The LABSP and related bit-string problems have served as model systems for this avenue
of research [23-26]. These investigations have shownIthg¢P has a golf-course-type
landscape structure, which explains the fact that it has been identified as a particularly hard
optimization problem for heuristic algorithms such as simulated annealing (see [27, 28] and
references therein). In this section we show thatuk&sP has by far more local optima than
one would expect from its correlation length or interaction order.

We use the fact that every function on the hypercisde —1}" can be written as a linear
combination of thep-spin functionse;, ;,....i, (x) = x;x;,%;, ... x;, to translateLABSP into
explicit spin glass form. Explicitly, we have for the aperiodic model [1]

[51-1n—2k N-1N-1

f)=ao+ Y > 2em(x)+ Y D i) (32)
k=1 i=1 k=1 i=1 j#i—k,i,itk

whereqg is a constant factor which does not dependvorA similar expression can be derived
for the periodic model. There are rough¥#/4 non-zero second-order contributions and on
the order ofNV 3 non-zero fourth-order contributions. Thus the relative weights (amplitudes) of
the 2-spin and 4-spin contributions &g= O(1/N) andBs = 1— O(1/N), respectively. For
the general definition aB, see [1]. The landscape of th&BSP thus consists of a (dominant)
4-spin Hamiltonian plus an asymptotically negligible quadratic component. The correlation
length? is therefore given by = N /8+0O(1), whichisin excellent agreement with the estimate
£ ~ 0.123x N — 0.983 from numerical simulations [29]. We note that the generic 4-spin
landscape is Derrida’s 4-spin Hamiltonian [7] which is a linear combination Qﬁ’;ddiistinct
4-spin functions, while equation (32), on the other hand, only contai®s®) non-vanishing
4-spin contributions. The landscape of thBSP thus corresponds to a dilute 4-spin glass.

Table 2 summarizes a numerical survey of the local minima of.#BsP. For N < 70
we have generated up to 86pin configurations at random and checked whether they are
local minima. As expected, the number of spin configurations that are local minima increases
exponentially as exfxN). The non-exponential pre-factor depends stronglyNomod 4:
separate estimates offrom data forNmod 4= 0, 1, 2, 3 show deviations of up t&6-0.005
within each of the variants of tHeABSP, while the standard deviations from linear regression
within each data set is almost an order of magnitude smaller. We conclude that the discrepancy
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of 0.008 between the best estimatesdg¥riodic aNdagpen IS NOt significant, since it is about
the same size as thé mod 4 dependence.

5. Conclusion

Metastable states are animportant aspect of alandscape ruggedness and, consequently, are often
employed as the determinant criterion for the choice of heuristics to search the configuration
space of optimization problems. It should be stressed, however, that the existence of an
exponentially large number of metastable states (local optima) says very little about the
computational complexity of a combinatorial optimization problem. In fact, both the one-
dimensional Ising spin glass [12, 30] and the disordered Ising ferromagnet [31] have a large
number of local optima but their ground states are very easily specified. In this paper we have
shown that anisotropies, that is, deviations from a maximum entropy condition, significantly
influence the frequency of metastable states, even when the interactionpoofi¢he spin

glass model, and therefore the correlation length of the resulting landscape, is kept constant.

The correlation lengtli was introduced as an easy-to-compute measure of ruggedness.
Later on, it turned out that it has desirable algebraic properties, particularly in the context
of Fourier transformation theory for fitness landscapes [1]. The inabilit§/ tof reflect the
z-dependence of\) is certainly a weakness of this measure, in particular when ruggedness
measures are used to predict the performance of optimization heuristics.

The anisotropy of short-range spin glass models is the consequence of a large number of
vanishing coupling constants compared with the corresponding infinite-gasgéen model.
Following earlier work by Tanaka and Edwards [17] we have determined the influence of a
finite connectivityz on the mean numbgp\V) of metastable states. Our result shows that,
to first order in ¥z, the number of metastable states increases, i.e., short-range spin glasses
are, in general, more rugged than their infinite-range counterparts. Moreover, the finite-
effect becomes much more pronouncegascreases since the coefficient ofzdiverges as
pln p. Of course, large anisotropies due to very small lattice connectivities cannot be dealt
with by our approach, which is also based on the assumption that all interaction patterns with
fixed connectivity are equivalent. However, numerical simulations of several fourth-order spin
glasses show that in these cas&s seems to depend only on the lattice connectivity and not
on the detailed geometry of the spin interactions.

The low-autocorrelated binary string problem may be regarded as a strongly anisotropic
4-spin model, where the interaction strength can assume only the values 0 and 1. This modelis
a particularly hard optimization problem [20, 28]. In this paper we have shown that it exhibits
a number of local optima that is by far larger than expected for a 4-spin model, even taking
into account the reduced number of non-zero coefficients.

Our results indicate that a large class of generic short-ranggin Hamiltonians may
be fully characterized by a few macroscopic parameters, nanvely; andz. Particular
anisotropic (non-generic) constructions, on the other hand, need not conform to this picture,
as the example of theABSP shows.
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