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Abstract. The mean number〈N 〉 of metastable states in spin glass models with short-ranged
p-spin interactions is estimated analytically using a variational method introduced by Tanaka and
Edwards (1980J. Phys. F: Met. Phys.102769) for very large coordination numbers. For lattices
with small connectivities, numerical simulations do not show any significant dependence on the
relative positions of the interacting spins on the lattice, indicating thus that these systems can be
described by a few macroscopic parameters. As an extremely anisotropic model we consider the
low-autocorrelated binary spin model and we show through numerical simulations that its landscape
has an exceptionally large number of local optima.

1. Introduction

The notion of an (adaptive) landscape has proved to be a valuable concept in theoretical
investigations of evolutionary change, combinatorial optimization, and the physics of
disordered systems. From the mathematical point of view, a landscape consists of three
ingredients: (i) a setV of ‘configurations’ which we shall assume to be finite but very large,
(ii) a cost or fitness functionf : V → R that evaluates the configurations, and (iii) some
sort of additional geometrical, topological, or algebraic structureX on V that allows us to
define notions of closeness, similarity, or dissimilarity among the configurations [1–3]. In the
simplest case,X is an adjacency relation. In this paper we shall consider systems consisting
of N Ising spins and we shall assume that two spin configurationsx andx ′ are adjacent when
they differ in the orientation of a single spin,x ′k = −xk. We say thatx ∈ V is alocal minimum
of the landscapef if f (x) 6 f (y) for all adjacent configurations (neighbours)y of x. The
use of6 instead of< is conventional [4,5]; it does not make a significant difference for spin
glass models. Local maxima are defined analogously. The numberN of local optima in a
landscape may serve as a measure for the landscape’s ruggedness [6].

Alternatively, ruggedness can be measured by means of correlation functions such asr(s),
defined as the autocorrelation function of the ‘time series’f (xt ) sampled along an unbiased
random walk ofs steps on the configuration space [3]. Explicitly,r(s) can be represented as
a quadratic form

r(s) = (f̃ , (D−1A)s f̃ )/(f̃ , f̃ ) (1)
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whereA is the adjacency matrix of the configuration space(V ,X ), D is the diagonal
matrix of its vertex degrees, i.e.,Dxx is the number of neighbours of each configuration,
f̃ (x) = f (x) − f , andf = |V |−1∑

x f (x) [1]. It is not hard to verify thatr(s) is an
exponential function if and only iff̃ is an eigenvector ofA. Such landscapes have been
termedelementary. The importance of elementary landscapes derives in part from the fact that
all Ising spin models

H(x) =
∑

(i1<i2<···<ip)
Ji1i2...ip xi1xi2 . . . xip (2)

with a fixed interaction orderp are elementary, with an eigenvalueN−2p that depends only on
p and not on the details of the index set(i1 < i2 < · · · < ip) of non-vanishing spin interactions.
In the case that the couplingsJi1...ip are statistically independent, Gaussian distributed random
variables, equation (2) defines Derrida’sp-spin Hamiltonian [7], which forp = 2 reduces to
the well known Sherrington–Kirkpatrick (SK) model [8].

The information contained inr(s) is conveniently further condensed into thecorrelation
length` =∑∞k=0 r(s). For elementary Ising spin models we obtain, immediately,` = N/(2p),
see e.g. [9, 10]. It would appear thatN and` are two sides of the same coin, and hence we
would expect a close connection between the two measures. Indeed, for Derrida’sp-spin
Hamiltonian the expected number of local optima〈N 〉 scales like exp(αN) with α increasing
from 0.199 forp = 2 to ln 2≈ 0.692 forp →∞ [11]. This increase ofα, and hence of the
number of local optima, matches the decrease of the correlation length` with increasingp.

Although for random landscapes (Hamiltonians with disorder) it is often desirable to
determine〈lnN 〉, in most cases one has〈lnN 〉 = ln〈N 〉 (a notable exception is the linear
spin chain [12]). The reason for this equality is that the overlap between two randomly chosen
metastable states vanishes with probability one and so the replica approach needed to evaluate
the average of lnN reduces to the annealed approximation, which takes the average directly
onN [13]. Of course, this is no longer true if one considers specific classes of metastable
states (e.g., those possessing a given energy density) or if one adds an external magnetic field
to the Hamiltonian (2) [14].

In [1, 2] the notion of anisotropic random landscape was introduced as a ‘statistically
symmetric model’, that is, as a random landscape with a covariance matrixCxy =
〈f (x)f (y)〉−〈f (x)〉〈f (y)〉 that shares the symmetries of the underlying configuration space.
An Ising spin glass is isotropic if and only if all interaction coefficientsJi1...ip are uncorrelated
with mean〈Ji1...ip 〉 = 0, and thoseJi1...ip that belong to a common interaction order have the
same variance,〈J 2

i1...ip
〉 = σ 2(p) [2]. In other words, the elementary isotropic Ising models

are exactly thep-spin Hamiltonians with infinite-range interactions. It is argued at length
in [15, 16] that isotropy can be interpreted as a maximum entropy condition. The properties
of the infinite-rangep-spin Hamiltonians are obviously determined exclusively by the number
of spinsN and the interaction orderp or, equivalently, by the correlation length`.

Short-range spin models, in which only a small fraction of all
(
N

p

)
possiblep-ary spin

interactions contribute to the Hamiltonian, i.e.,〈J 2
i1i2...ip

〉 = 0 for mostp-ary spin patterns
(i1 < i2 < · · · < ip), deviate significantly from isotropy. For the SK model (p = 2) a slightly
larger number of local optima has been found [17, 18] than for the infinite-range case [19].
The deviation is proportional to 1/z, wherez is the number of the nearest-neighbouring points
in a hypercubic lattice of dimensiond = z/2.

In this contribution we show that an analogous effect is at work in higher order,p > 2,
spin glasses. In addition, numerical simulations for small values of connectivities do not
show a substantial dependence on the patterns of interacting spins. The rest of this paper is
organized in the following way. In section 2 we generalize the variational method of Tanaka
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and Edwards [17] to estimate the 1/z corrections to the expected number of metastable states
of Derrida’sp-spin model. The results of numerical simulations of fourth-order spin glasses in
two- and three-dimensional cubic lattices with small connectivities are discussed in section 3.
In section 4 we investigate the metastable states of a highly frustrated one-dimensional spin
model without explicit disorder, namely, the low autocorrelated binary string problem [20].
Finally, in section 5 we present some concluding remarks.

2. Short-rangep-spin models

The coupling strengthsJi1...ip in equation (2) are modelled as statistically independent random
variables with the Gaussian distribution

P(Ji1i2...ip ) =
√
zp−1

πp!
exp

[
− (Ji1i2...ip )

2zp−1

p!

]
2[(i1 < i2 < · · · < ip)] (3)

where2[(i1 < i2 < · · · < ip)] = 1 if (i1 < · · · < ip) is a valid interaction pattern and 0
otherwise. Since in practice it is not feasible to consider a fixed interaction pattern, we consider
all interaction patterns with given fixed coordination numberz. In other words, we sum over
all ways of choosing thep − 1 spins among thez allowed ones.

As an immediate consequence of equation (2) the energy cost of flipping the spinxj is
δH = 2λj , where

λj =
∑

(i2<···<ip)
Jji2...ip xj xi2 . . . xip (4)

is the stability ofxi . Hence any statex that satisfies

λi > 0 ∀i (5)

is a local minimum of the random landscape defined in equation (2). Thus the number of local
minima can be written as

N = Trx
∏
j

∫ ∞
0

dλjδ

(
λj −

∑
(i2<···<ip)

Jji2...ip xj xi2 . . . xip

)
(6)

where Trx denotes the summation over the 2N spin configurations andδ(x) is the Dirac delta
function.

In the following we will calculate analytically the expected number of metastable states
〈N 〉 in the limit of largeN andz, with N � z. Here〈. . .〉 stands for an average over the
coupling strengths in all possible interaction patterns with fixed coordination numberz. Using
the integral representation of the delta function, the average over the couplings as well as the
summation over the spin configurations can be easily performed [14], yielding

〈N 〉 =
∏
i

∫ ∞
0

dλi

∫ ∞
−∞

dφi
π

exp(iλiφi)

× exp

[
− p!

4zp−1

∑
(i1<i2<···<ip)

(φi1 + φi2 + · · · + φip )2
]
. (7)

Clearly, the expansion of the quadratic term in the argument of the exponential function
will lead to interactions terms of second order in the auxiliary fieldsφi . More precisely, using

p!

zp−1

∑
(i1<···<ip)

φ2
i1
= 1

zp−1
z(z− 1) . . . (z− p + 2)

∑
i

φ2
i

=
[
1− 1

2z
(p − 1)(p − 2) +O(z−2)

]∑
i

φ2
i (8)
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and
p!

zp−1

∑
(i1<···<ip)

φi1φi2 =
2

zp−1
(z− 1)(z− 2) . . . (z− p + 2)

∑
(i<j)

φiφj

=
[

2

z
+O(z−2)

] ∑
(i<j)

φiφj (9)

we write equation (7) as

〈N 〉 =
∫ ∞
−∞

∏
i

dφiD(φi) exp

[
− p(p − 1)

2z

∑
(i<j)

φiφj

]
(10)

where

D(φi) =
[
1 +

p(p − 1)(p − 2)

8z
φ2
i +O(z−2)

] ∫ ∞
0

dλ

π
e−iλφi−pφ2

i /4 (11)

is the field’s weight function. As mentioned before, equations (8) and (9) follow from the
sum over all possible interaction patterns with coordination numberz. More precisely, for
each sitei there are preciselyz sitesk such that(i, k, i3, . . . , ip) is a valid interaction pattern
for some choice ofi3, . . . , ip. This notion of site connectivity is independent of the lattice
dimensionality; in fact, it is not necessary to assume that the sites are arranged on a lattice
at all: equation (10) remains valid as long asz is site independent. Hence we will refer toz
simply as theconnectivityof our model.

To proceed further we must evaluate the integrals in equation (10) taking the care to collect
all terms of first order in 1/z. In particular, note that

∑
(i<j) 1 = Nz

2 . This can be achieved
through an ingenious variational method introduced by Tanaka and Edwards in their analysis
of the casep = 2 [17]. The idea is to add an auxiliary single-particle term to the effective
Hamiltonian of equation (10) which is then rewritten as

〈N 〉 = [8(t)]N
〈

exp

[
− p(p − 1)

2z

∑
(i<j)

φiφj − itp1/2
∑
i

φi

]〉
t

(12)

where the average〈. . .〉t is defined by

〈. . .〉t =
∫ ∏

i dφiD(φi)(. . .)exp(itp1/2∑
i φi)∫ ∏

i dφiD(φi) exp(itp1/2
∑

i φi)
(13)

and

8(t) =
∫ ∞
−∞

dφD(φ) exp(itp1/2φ)

= erfc (−t) +
1

z

t√
4π
(p − 1)(p − 2) e−t

2
+O(z−2). (14)

For example, we find

ip1/2〈φk〉t = 8′(t)/8(t) (15)

−p〈φ2
k 〉t = 8′′(t)/8(t) (16)

for k = 1, . . . , N . Heret is a variational parameter which will be determined so as to maximize
〈N 〉. At this point we can note that the 1/z expansion is valid provided thatz� p2.

As usual, the average in equation (12) can be evaluated through the cumulant expansion.
In particular, we assume that only the first cumulant contains terms of zeroth order in 1/z and it
is solely these terms that determine the valuet = tm that maximizes〈N 〉 [17]. Of course, this
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assumption must be verifieda posteriori through the explicit calculation of the higher-order
cumulants. Evaluating the first cumulant we find thattm maximizes the expression

ln8(t)− p(p − 1)

4
〈φk〉2t − itp1/2〈φk〉t (17)

and so it is given by the solution of the equation

tm = 1
2(p − 1)ip

1
2 〈φk〉tm . (18)

The usefulness of the variational approach becomes transparent only when we rewrite
equation (12) replacingt by tm and rearranging the terms:

〈N 〉 = exp

[
N ln8(tm) +N

p(p − 1)

4
〈φk〉2tm

]
× 〈exp(4)〉tm (19)

where

4 = −p(p − 1)

2z

∑
(i<j)

(φi − 〈φi〉tm )(φj − 〈φj 〉tm ). (20)

Since 〈4〉tm = 0, it is now straightforward to evaluate the higher-order cumulants in the
cumulant expansion

〈exp(4)〉tm = exp

( ∞∑
n=1

1

n!
〈4n〉tm;c

)
. (21)

In particular, we find

〈41〉tm;c = 0 (22)

〈42〉tm;c = N
p2(p − 1)2

8z
〈(φk − 〈φk〉tm )2〉2tm (23)

〈43〉tm;c = −N
p3(p − 1)3

16z2
〈(φk − 〈φk〉tm )3〉2tm . (24)

More generally, we can easily show that〈4n〉tm;c is of orderz1−n. Therefore, to keep terms up
to 1/z we need to consider only the second cumulant in equation (21). Moreover, the leading
terms of the 1/z expansion (i.e., the terms of zeroth order in 1/z) are those outside the average
symbol in equation (19). Clearly, these results remain unchanged by the fact that forp > 2,
the averages〈φnk 〉tm also contribute to the 1/z corrections, see equations (14)–(16). Hence,

1

N
ln〈N 〉 = ln8(tm) +

p(p − 1)

4
〈φk〉2tm +

p2(p − 1)2

16z
(〈φ2

k 〉tm − 〈φk〉2tm )2 +O(z−2). (25)

The next step is to separate the contributions of zeroth and first order in 1/z. To achieve
this we note thattm is determined only by the zeroth-order term in the 1/z expansion so that
equation (18) reduces to

tm = p − 1√
π

exp(−t2m)
erfc(−tm) . (26)

Inserting this result into equations (14)–(16), we rewrite equation (25) as

lim
N→∞

1

N
ln〈N 〉 = α = α0 +

1

z
α1 +O(z−2) (27)

with

α0 = ln[erfc(−tm)] − t2m

p − 1
(28)

α1 = p2t2m

[
t2m

(p − 1)2
+
p − 2

2p2

]
. (29)
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Table 1. Values ofα0 andα1 obtained from equations (26), (28) and (29).

p 2 3 4 5 6 10

α0 0.1992 0.2956 0.3552 0.3965 0.4273 0.5001
α1 0.0656 0.3393 0.7789 1.3411 1.9985 5.2894

Figure 1. Interaction patterns of various short-range 4-spin models. For each grid position
(indicated by the open circle) a non-zero contribution to the energy depends on the four spins
indicated by the black circles.

In table 1 we summarize the values ofα0 andα1 obtained from a numerical solution of
equation (26). Forp → ∞ we find tm ≈

√
lnp and soα0 → ln 2, while α1 diverges as

p lnp. Of course,α1/z� 1 since, as mentioned before, the 1/z expansion is consistent only
if z � p2. We note that our results forp = 2 are in agreement with those of [17]; the values
of α0 agree with the TAP solution [11], and with a numerical survey [21].

3. Simulations

The analytical results in section 2 are valid for very large connectivities,z � p2, and for
superimposed interaction patterns. Actually, the later restriction amounts to considering all
the interaction patterns as equivalent, in the sense that they have, on average, the same number
of local minima. In order to investigate the effect of distinct interaction patterns, in this section
we consider a variety of 4-spin models with small connectivities.

For the sake of computational simplicity we consider only translation invariant interaction
patternsP on two- and three-dimensional cubic lattices with periodic boundary conditions.
We identify each spin by itsd-dimensional lattice coordinates and take all indices modulo the
lattice sizesm1 throughmd . In two dimensions, for instance, translation invariance means
(i1, j1; i2, j2; i3, j3; i4, j4) ∈ P if and only if (i1 + p, j1 + q; i2 + p, j2 + q; i3 + p, j3 + q; i4 +
p, j4 + q) ∈ P for all integersp modm1 andq modm2. The Hamiltonian (2) becomes

H(x) =
∑

(i1j1,i2j2,i3j3,i4j4)∈P

Ji1j1;i2j2;i3j3;i4j4xi1j1xi2j2xi3j3xi4j4 (30)

in this example. A variety of interaction patterns on a square lattice, compiled in figure 1 and
named according to the number and type of combinations (patterns) of spins that contribute
to the Hamiltonian (30), have been used. In addition, we have considered three patterns on
a cubic lattice: (i) the ‘positive orthant’, coupling each spinxi,j,k with its lattice neighbours
alongxi+1,j,k, xi,j+1,k andxi,j,k+1, (ii) the patternS restricted to a fixed plane, i.e.,xi,j,k coupled
with xi,j+1,k, xi,j,k+1, andxi,j+1,k+1, and (iii) the couplings with the neighbours in all eight
orthants.
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Table 2. Estimated values ofα for various short-range 4-spin models. For each pattern we list the
numberX of non-zero interaction coefficients per spin, the site connectivityz, the best numerical
estimate forα and standard deviation estimated from the linear regression.

Model Pattern X z α Standard deviation

q S 1 8 0.4056 0.0027
qdq D 1 8 0.4058 0.0017
q1Tq T1 1 10 0.3820 0.0024
q1q B 1 8 0.3885 0.0266

q2q S,D 2 12 0.3830 0.0049
qpq T3,T4 2 12 0.3830 0.0013

q3q S,D,B 3 16 0.3695 0.0014
q4q T1-T4 4 12 0.3807 0.0009
q5q T1-T4,D 5 12 0.3744 0.0012
q6q T1-T4,D,B 6 16 0.3746 0.0012
q8q T1-T4,L1-L4 8 20 0.3744 0.0014
qAq T,L,D,B 10 24 0.3757 0.0026

c octant 1 12 0.3911 0.0053
cp planarS 1 8 0.4181 0.0076
c8 8 octants 8 18 0.4058 0.0174

4-spin numerical ∞ 0.3509 [21]
TAP 0.3552 [11]

LABSP open O(N2) O(N) 0.4634 0.0011
LABSP periodic O(N2) O(N) 0.4713 0.0020

The relevant quantity for comparing the simulations with the analytical theory is the
connectivityz of a lattice sitej , that is, the number of spinsk 6= j such thatJjki3i4 6= 0
for somei3 and i4. The value ofz depends, of course, strongly on the interaction pattern,
see table 2. Note thatz is independent of the lattice dimensionality and of the numberX of
non-zero interaction strengths per site.

Numerical simulations were performed by sampling up to 108 spin configurations from at
least 105 different instances (random assignments of the coupling constants) for each model
and values ofN = ∏d

k=1mk between 8 and 60. The standard deviations listed in table 2 are
statistical errors from fitting the curve ln〈N 〉 versusN to a straight line. With the exception of
the cubic models, where we have only few data points, and the modelsq1q, q2q, which show
quite strong finite-size effects, the correlation coefficient of the linear regression is% > 0.9998.

By comparison with the numerical estimates for the infinite-range 4-spin glass we suspect
that systematic errors might be slightly larger than the statistical errors. A conservative estimate
appears to be an overall accuracy of at least±0.012. We also note that replacing the Gaussian
distribution ofJi1...ip by a uniform distribution with mean 0 apparently does not significantly
influence the number of metastable states.

The results of table 2 show a clear tendency for the decrease ofα with increasing
connectivitiesz, as expected from the calculations of section 2. Moreover, for fixedz and
within the estimated accuracy, the values ofα seem to be independent of the geometry of the
interaction patterns. This interesting result indicates that the properties of short-rangep-spin
Hamiltonians may be fully characterized by a few macroscopic parameters, namely,N , p
andz. Indeed, the error between our theoretical predictions forp = 4 (see table 1) and the
numerical data for the two-dimensional model with the largest connectivity,qAq (z = 24), is
only 3.2%. (Comparison of the simulation data with the TAP solution forz → ∞ yields an
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error of 5.4%.) Since the estimated systematic error is 1.2%, the agreement between theory
and simulations is quite good and provides additional evidence of the minor role played by the
geometry of the interaction patterns on the landscape properties ofp-spin models.

4. The low autocorrelated binary string problem

The low autocorrelated binary string problem (LABSP) [20, 22] consists of finding binary
stringsx of lengthN over the alphabet{±1} with low aperiodic off-peak autocorrelation
Rk(x) =

∑N−k
i=1 xixi+k for all lagsk. These strings have technical applications such as the

synchronization in digital communication systems and the modulation of radar pulses. In the
periodic variant of this model, one considersRk(x) =

∑N
i=1 xixi+k with indices taken modN .

The quality of a stringx is measured by the fitness function

f (x) =
N−1∑
k=1

Rk(x)
2. (31)

In most of the literature on theLABSP themerit factorF(x) = N2/(2f (x)) is used (see [20]):
usingf instead is more convenient for explicit computations.

Recently there has been much interest in frustrated models without explicit disorder.
The LABSP and related bit-string problems have served as model systems for this avenue
of research [23–26]. These investigations have shown thatLABSP has a golf-course-type
landscape structure, which explains the fact that it has been identified as a particularly hard
optimization problem for heuristic algorithms such as simulated annealing (see [27, 28] and
references therein). In this section we show that theLABSP has by far more local optima than
one would expect from its correlation length or interaction order.

We use the fact that every function on the hypercube{+1,−1}N can be written as a linear
combination of thep-spin functionsεi1,i2,...,ip (x) = xi1xi2xi3 . . . xip to translateLABSP into
explicit spin glass form. Explicitly, we have for the aperiodic model [1]

f (x) = a0 +
d N2 e−1∑
k=1

N−2k∑
i=1

2εi,i+k(x) +
N−1∑
k=1

N−1∑
i=1

∑
j 6=i−k,i,i+k

εi,i+k,j,j+k(x) (32)

wherea0 is a constant factor which does not depend onN . A similar expression can be derived
for the periodic model. There are roughlyN2/4 non-zero second-order contributions and on
the order ofN3 non-zero fourth-order contributions. Thus the relative weights (amplitudes) of
the 2-spin and 4-spin contributions areB2 = O(1/N) andB4 = 1−O(1/N), respectively. For
the general definition ofBp see [1]. The landscape of theLABSP thus consists of a (dominant)
4-spin Hamiltonian plus an asymptotically negligible quadratic component. The correlation
length` is therefore given bỳ= N/8+O(1), which is in excellent agreement with the estimate
` ≈ 0.123× N − 0.983 from numerical simulations [29]. We note that the generic 4-spin
landscape is Derrida’s 4-spin Hamiltonian [7] which is a linear combination of all

(
N

4

)
distinct

4-spin functions, while equation (32), on the other hand, only containsO(N3) non-vanishing
4-spin contributions. The landscape of theLABSP thus corresponds to a dilute 4-spin glass.

Table 2 summarizes a numerical survey of the local minima of theLABSP. ForN 6 70
we have generated up to 108 spin configurations at random and checked whether they are
local minima. As expected, the number of spin configurations that are local minima increases
exponentially as exp(αN). The non-exponential pre-factor depends strongly onN mod 4:
separate estimates ofα from data forNmod 4= 0, 1, 2, 3 show deviations of up to±0.005
within each of the variants of theLABSP, while the standard deviations from linear regression
within each data set is almost an order of magnitude smaller. We conclude that the discrepancy
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of 0.008 between the best estimates forαperiodic andαopen, is not significant, since it is about
the same size as theN mod 4 dependence.

5. Conclusion

Metastable states are an important aspect of a landscape ruggedness and, consequently, are often
employed as the determinant criterion for the choice of heuristics to search the configuration
space of optimization problems. It should be stressed, however, that the existence of an
exponentially large number of metastable states (local optima) says very little about the
computational complexity of a combinatorial optimization problem. In fact, both the one-
dimensional Ising spin glass [12, 30] and the disordered Ising ferromagnet [31] have a large
number of local optima but their ground states are very easily specified. In this paper we have
shown that anisotropies, that is, deviations from a maximum entropy condition, significantly
influence the frequency of metastable states, even when the interaction orderp of the spin
glass model, and therefore the correlation length of the resulting landscape, is kept constant.

The correlation length̀ was introduced as an easy-to-compute measure of ruggedness.
Later on, it turned out that it has desirable algebraic properties, particularly in the context
of Fourier transformation theory for fitness landscapes [1]. The inability of` to reflect the
z-dependence of〈N 〉 is certainly a weakness of this measure, in particular when ruggedness
measures are used to predict the performance of optimization heuristics.

The anisotropy of short-range spin glass models is the consequence of a large number of
vanishing coupling constants compared with the corresponding infinite-rangep-spin model.
Following earlier work by Tanaka and Edwards [17] we have determined the influence of a
finite connectivityz on the mean number〈N 〉 of metastable states. Our result shows that,
to first order in 1/z, the number of metastable states increases, i.e., short-range spin glasses
are, in general, more rugged than their infinite-range counterparts. Moreover, the finite-z

effect becomes much more pronounced asp increases since the coefficient of 1/z diverges as
p lnp. Of course, large anisotropies due to very small lattice connectivities cannot be dealt
with by our approach, which is also based on the assumption that all interaction patterns with
fixed connectivity are equivalent. However, numerical simulations of several fourth-order spin
glasses show that in these cases〈N 〉 seems to depend only on the lattice connectivity and not
on the detailed geometry of the spin interactions.

The low-autocorrelated binary string problem may be regarded as a strongly anisotropic
4-spin model, where the interaction strength can assume only the values 0 and 1. This model is
a particularly hard optimization problem [20,28]. In this paper we have shown that it exhibits
a number of local optima that is by far larger than expected for a 4-spin model, even taking
into account the reduced number of non-zero coefficients.

Our results indicate that a large class of generic short-rangep-spin Hamiltonians may
be fully characterized by a few macroscopic parameters, namely,N , p and z. Particular
anisotropic (non-generic) constructions, on the other hand, need not conform to this picture,
as the example of theLABSP shows.
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